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Wednesday (Jan 27) Lecture Outline
• Canonical formulation of 1D FEL theory
• Q&A
• Numerical simulator for 1D FEL

• Q&A
• Numerical simulator – ZFEL code

• Q&A
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Canonical formulation of 1D FEL theory
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Lagrangian description

• Lagrangian for a relativistic electron in an electromagnetic field:1,2

𝐿 𝒓, �̇�; 𝑡 = −𝑚!𝑐" 1 −
�̇�"

𝑐"
+ 𝑒𝜙 𝒓 − 𝑒�̇� / 𝑨 𝒓

• Lagrangian density for classical electrodynamics:1,3

ℒ = −
1
4𝜇#

𝐹$%𝐹$% − 𝐴$𝐽$,

where, 𝐹$%𝐹$% = 2 𝜕$𝐴%𝜕$𝐴% − 𝜕%𝐴$𝜕$𝐴% , 𝐴$ =
& 𝒓
( , −𝑨 𝒓 and 𝐽$ =

𝑐𝜌 𝒓 , 𝒋 𝒓 ;

• The Hamiltonian principle: 𝛿𝑆 = 𝛿 ∫)!
)" 𝐿 𝒓, �̇�; 𝑡 𝑑𝑡 = 0.

4

1 L. D. Landau and E. M. Lifshitz, The classical theory of fields; 3rd ed., ser. Course of theoretical physics. Oxford: Pergamon, 1971, Eq. (28.6) [Conversion of Gaussian to 
SI units is discussed at https://en.wikipedia.org/wiki/Gaussian_units#Major_differences_between_Gaussian_and_SI_units]

2 https://en.wikipedia.org/wiki/Relativistic_Lagrangian_mechanics and        3 https://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism

https://en.wikipedia.org/wiki/Gaussian_units
https://en.wikipedia.org/wiki/Relativistic_Lagrangian_mechanics
https://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism


FEL in Lagrangian description

• An ensemble of electrons creates charge density 𝜌 𝒓 = −𝑒∑*+,
-# 𝛿 𝒓 − 𝒓* 𝑡

and the current density 𝑗 𝒓 = −𝑒∑*+,
-# �̇�* 𝑡 𝛿 𝒓 − 𝒓* 𝑡 resulting in

𝐿.*) = −B𝐴$𝐽$𝑑/𝒓 = 𝑒C
*+,

-#
𝜙 𝒓* − �̇�* / 𝑨 𝒓* ,

which is the same term as in the Lagrangian for a relativistic electron in an 
electromagnetic field but summed over all the particles;
• There are no stationary charges therefore 𝜙(𝒓) = 0 will be assumed resulting in 

Coulomb and Lorentz gauges1 becoming ∇ / 𝑨 = 0.

5
1 https://en.wikipedia.org/wiki/Gauge_fixing
2 For more info on the Electromagnetic tensor 𝐹!" go to https://en.wikipedia.org/wiki/Electromagnetic_tensor

https://en.wikipedia.org/wiki/Gauge_fixing
https://en.wikipedia.org/wiki/Electromagnetic_tensor


Assumptions for 1D FEL

• Consider a helical undulator with a period 𝜆1 that is described by

𝑨1 𝑧 =
𝑚!𝑐
2𝑒
𝐾J𝝐𝑒2.3$4 + 𝑐. 𝑐. ,

where J𝝐 = (M𝒙 + 𝑖M𝒚)/ 2 is the polarization vector, 𝑘1 = 2𝜋/𝜆1 is the undulator 
wavenumber and 𝐾 = 0.934 𝐵# 𝑇 𝜆1 𝑐𝑚 is the undulator parameter;
• Further consider a plane-wave radiation field of wavelength 𝜆:

𝑨5 𝑧, 𝑡 = −
𝑖
2𝑘
𝐸 𝑡 J𝝐𝑒.342.6) + 𝑐. 𝑐. ,

where the phase conversion is such that 𝑨1 / 𝑨5 ≠ 0.
• Since the Lagrangian does not depend on 𝑥 or 𝑦 variables then the canonical 

momenta 787�̇�%
≝ 𝒑: = 𝑐𝑜𝑛𝑠𝑡 and could be set to zero.
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1D FEL in Lagrangian description

• The undulator vector potential is externally created and does not have to be 
included in the Lagrangian of the system. The Lagrangian of the radiation field 
confined to some volume V is

𝐿 = Bℒ𝑑𝒓 = −
1
2𝜇#

𝐵5" −
𝐸5"

𝑐"
𝑉 ≈

𝑉
𝜇#
𝑖𝐸∗

𝜔
�̇�,

which results in the canonical momentum for the electromagnetic field to be 

𝑝< ≝
=8
=<̇
= >

?&
.<∗

6
;

• The Hamiltonian principle can now be rewritten as

𝛿 B
)!

)"
𝑝<𝑑𝐸 +C

*+,

-#
𝑝4,*𝑑𝑧* −𝐻*𝑑𝑡 = 0.
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1D FEL in Hamiltonian description

• The Hamiltonian for a single electron becomes

𝐻! ≈ 𝑐 𝑚"𝑐" + 𝑝#,!" + 2
𝑒 𝑚%𝐾
𝑘

𝐼𝑚 𝐸 𝑡 𝑒&'# ,

where 𝜃! = 𝑘 + 𝑘( 𝑧! −𝜔𝑡 is the ponderomotive phase; 𝑚" = 𝑚%
" 1 + 𝐾" is a 

longitudinal mass of an ‘undulator’ electron and we have neglected ∼ 𝐸 𝑡 " term;
• We will replace the canonical variable 𝑧! with 𝜃! in the Hamiltonian principle such that 
𝑑𝑧! = (𝑑𝜃! +𝜔𝑑𝑡)/(𝑘 + 𝑘();

• We will define the efficiency of an FEL interaction 𝜌 = )$%&' *
+(

/𝛾,𝑚%𝑐"𝑁% as the ratio of 
the EM energy at saturation to the beam energy and rescale the field amplitude to its 
value at saturation 𝑑𝐸 = 𝐸-./𝑑𝐴.
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1D FEL in Hamiltonian description cont’d

• The Hamiltonian principle in the FEL theory notations becomes

𝛿 "
!!

!"
𝑝"𝑑𝐴 +'

#$%

&#
𝑝',#𝑑𝜃# − *𝐻#𝑑𝜏 = 0

in terms of scaled time 𝑑𝑡 = 0)! *+,$-, new canonical momenta 𝑝',# =
.%,'
,/,$

and 𝑝" =
𝑖 +0(1#-

,
𝑁2𝐴∗, and a new Hamiltonian for nth electron

*𝐻# =
1

2𝑘4𝜌
𝑘 + 𝑘4 *𝑝',#

* +𝑚*𝑐* 1 + 𝒱 − 𝑘 𝑝',# ,

where a scaled ponderomotive potential has been introduced

𝒱 =
2𝐾

1 + 𝐾*
𝜔.2
𝜔

𝜌𝛾5𝐼𝑚 𝐴 𝜏 𝑒6'' ,

in terms of the beam plasma frequency 𝜔.2* = 2"

1#7(
&
8

.
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FEL Hamiltonian

• In the absence of the ponderomotive 
potential created by the radiation the 
Hamiltonian of nth electron becomes:

f𝐻 =
𝑚𝑐
2𝑘1𝜌

1 + 𝑝" − 𝑣AB𝑝 ,

where a new momentum 𝑝 = 3C3$ D(
E(

and the Bambini-Renieri velocity in units 
of speed of light 𝑣AB =

3
3C3$

have been 
introduced;
• We here illustrate the case of 𝜆 = 0.3 𝐴

radiation in 𝜆1 = 1.86 𝑐𝑚 undulator.
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Ponderomotive Potential

• The scaled ponderomotive potential 𝒱 = "F
,CF"

6)#
6 𝜌𝛾#𝐼𝑚 𝐴 𝜏 𝑒.G* ≪ 1 can 

be treated as a perturbation to the Hamiltonian evolution:
𝑑𝑝G
𝑑𝜏

= −
𝜕 f𝐻
𝜕𝜃

= 0

𝑑𝜃
𝑑𝜏

=
𝜕 f𝐻
𝜕𝑝G

=
𝑘 + 𝑘1
2𝑘1𝜌

𝑝
1 + 𝑝"

− 𝑣AB

where the canonical momentum is conserved  and the phase is linearly increasing;
• Efficient interaction with the Ponderomotive potential requires 𝒱 G ≠ 0, which 

could be achieved with =G=H = 0 = 7IJ
7D(

condition that corresponds to the minimum 
of f𝐻!
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The resonant energy and the FEL parameter

• The equilibrium momentum that minimizes the Hamiltonian and maximizes the 
ponderomotive interaction can be expressed as  𝑝G

!K = L#+E 4̇#+
3C3$

with an 
equilibrium Lorentz factor 𝛾!K corresponding to the velocity �̇�!K = 𝑐 𝑣AB;

• This implies that the resonant energy for an electron is 𝛾5" ≈ 1 + 𝐾" 𝑘/2𝑘1 in 
accordance with the classical X-ray FEL theory!

• The final Hamiltonian thus becomes 

𝐻* = 𝐻# +
𝑝*"

2𝑀
+ 2𝑀 𝐼𝑚 𝐴 𝜏 𝑒.G* ,

where 𝐻# = 𝑚𝑐"/2𝑘1𝑐𝜌𝛾!K, 𝑝* is the detuning for the equilibrium momentum, 

and 𝑀 = 𝜌𝑝G
!K if one chooses the FEL parameter to be 𝜌 = ,

L,

F6)#
M(3$

"
-!
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1D FEL equations

𝑑𝐴
𝑑𝜏

=
𝜕
𝜕𝑝N

C
*+,

-#
𝐻* ≈

1
𝑁!
C

*+,

-#
𝑒2.G*

𝑑𝜃*
𝑑𝜏

=
𝜕𝐻*
𝜕𝑝*

=
𝑝*
𝑀

𝑑𝑝*
𝑑𝜏

= −
𝜕𝐻*
𝜕𝜃*

= −2𝑀 𝑅𝑒 𝐴 𝜏 𝑒.G*

One can introduce a scaled energy detuning 𝜂* =
D*
O
= L*2L,

PL,
in order to recover 

the Eqs. 4.31a, 4.31b, 4.31c and 4.31d of the book.
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Additional reading on The FEL Hamiltonian

• S. D. Webb, “Period-Averaged Symplectic Maps for the FEL Hamiltonian” 38th

International Free Electron Conference, 2017;
• P. M. Anisimov, “Canonical Formulation of 1D FEL Theory Revisited, Quantized 

and Applied to Electron Evolution”, 38th International Free Electron Conference, 
2017;

• P. M. Anisimov, “Quantum theory for 1D X-ray Free Electron Laser”, Journal of 
Modern Optics, 65(11), pp 1370-1377, 2018.
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Numerical simulator for 1D FEL
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1D FEL equations in Python

𝑑𝐴
𝑑𝜏

=
1
𝑁!
C

*+,

-#
𝑒2.G*

𝑑𝜃*
𝑑𝜏

= 𝜂*

𝑑𝜂*
𝑑𝜏

= −2 𝑅𝑒 𝐴 𝜏 𝑒.G*
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What are the initial conditions?

• 𝐴 0 = 𝐴# corresponds to a seeded FEL and  𝐴 0 = 0 corresponds to SASE FEL;

• 𝜃* = 0 gives bunching 𝑏 = ,
-#
∑*+,
-# 𝑒2.G* = 1;

• A random uniform distribution 𝜃* ∈ −𝜋, 𝜋 has bunching 𝑏 = ,
-#
∑*+,
-# 𝑒2.G* = 0

but 𝑏 "
G = 1/𝑁!, which is sufficient to initiate FEL instability;

• 𝜃* = 𝑥* + 𝛿𝜃 sin 𝑥* such that 𝑏 " = 0 when 𝛿𝜃 = 0 – a so called ‘quiet 
start’.

• What other initial conditions can you think of?
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Case 1

18



Case 1
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Case 2 – “quiet start”
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Case 3 – “seeded operation”
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Case 3 – “seeded operation”
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Case 3 – “seeded operation” scan

23

Observe:
• Lethargy period;
• Exponential growth;
• Saturated power;
• Power circulation.

Compare:

𝑃 =
𝑃#
9
𝑒
.C /
" H + 𝑒

.2 /
" H + 𝑒2.H

"

Invariant of the evolution:
𝜂 𝜏 + 𝐴 𝜏 " = 𝑐𝑜𝑛𝑠𝑡

𝑃 =
𝑃)
9
𝑒 *+



Case 4 – “SASE operation”
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Case 4 – “SASE operation”
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Case 4 – “SASE operation” scan
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Case 5 – “Energy spread driven FEL” scan
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Case 6 – “controlled SASE”

28

controlled random



Case 6 – “controlled SASE”

29

• The choice of 𝛿𝜃 = 2/ 𝑁! comes from the requirement to recover the correct 
Poisson statistics1 such that 𝑒2.G* = ,

"𝛿𝜃 = 1/ 𝑁!;

• 𝑁! is the number of interacting electrons such that 𝑁! = 4.3 8.U$
V/U
!W/

and 𝛿𝜃 =
1.38×102/ corresponds to MaRIE XFEL case;

• We can also define an equivalent startup noise power 𝐴 0 " = 𝑁!2,.

1We refer an interested reader to “The effect of shot noise on the start up of the fundamental and harmonics in free-electron lasers” by H. P. Freund et al., J. Appl. 
Phys. 104, 123114 (2008); https://doi.org/10.1063/1.3040689

https://doi.org/10.1063/1.3040689


Case 7 – SASE vs shot noise power

30

𝛿𝜃 0 = 0.00138
𝐴 0 = 0.0

𝛿𝜃 0 = 0.0

𝐴 0 =
0.00138

2



Case 7 – SASE vs shot noise power

31

Observe:
• SASE vs shot noise power 

distinction happens during the 
lethargy period;

• The number of macro particles 
used for the simulation does not 
depend on the number of 
interacting electrons 𝑛! ≪ 𝑁!!



Case 7 – SASE vs shot noise power

32

Numerical simulation vs Analytical solution Phase in SASE case (green) vs Seeded case (blue)



Case 7 – A typical animation
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Case 8 – resonance curve

34

Something is WRONG here?!



Case 9 – correct resonance curve (HW)

35

Observe:
• Maximum gain of 3 is reached 

at zero energy detuning;
• The resonance curve is 

asymmetric;
• The lower energy case keeps 

lasing longer!



Numerical simulator – ZFEL code
https://github.com/slaclab/zfel.git
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ZFEL package structure

• sase1d_input_part.sase performs 1D FEL simulation
• .sase.params_calc performs FEL normalization
• .general_load_bucket.general_load_bucket performs (𝜃#, 𝜂#) distribution 

generation
• .sase.FEL_process performs dimensionless FEL calculations
• .sase.final_calc converts dimensionless results back to physical units

• Output:
• z, power_z, s, power_s, rho, detune, field, field_s, gainLength, resWavelength, thet_out, 

eta_out, bunching, spectrum, freq, Ns, history

37



SASE 1D FEL run function: Input
Electron beam description X-ray radiation description

Undulator description Technical description

38

energy electron energy [eV]

eSpread relative rms energy spread [ ]

emitN normalized transverse emittance [m-rad]

currentMax peak current [Ampere]

beta mean beta [meter]

z_steps n-sample points along undulator

unduPeriod undulator period [meter]

unduK undulator parameter, array of K [ ]

unduL length of undulator [meter]

dEdz not implemented yet

Nruns not implemented yet

npart n-macro-particles per bucket 

constseed use constant random seed for reproducibility, 1 
Yes, 0 No

particle_position particle distro with positions in meter and eta

hist_rule different rules to select number of intervals to 
generate the histogram of eta value in a bucket

s_steps n-sample points along bunch length

radWavelength seed wavelength? [meter], used only in single-
freuqency runs

iopt 'sase' or 'seeded'

P0 small seed input power [W]



Graphical representation

39

a𝜆,

𝐵 = 𝐵) d𝑦 sin(2𝜋𝑧/𝜆,)
𝐾 = 0.934 𝐵) 𝑇 𝜆, 𝑐𝑚

𝐿,

10 𝑧-./0-Δ𝑧 =
𝐿,

𝑧-./0-

slippage

0 𝑠-./0-

0 𝑠-./0-

X-ray radiation

e-beam𝛿𝑠 = Δ𝑧
𝜆1
𝜆,

𝛾) = 𝐸/𝑚𝑐2

Normalized emittance: 𝜀3 =
4
5!

;  mean beta: �̅� = 6"

5!4#



Slippage
• The FEL resonance condition 𝑘 + 𝑘1 𝑧 − 𝜔{𝑡 = 𝑐𝑜𝑛𝑠𝑡 means that an x-ray 

radiation overtakes e-beam by 𝛿𝑠 = 𝜆{ every Δ𝑧 = 𝜆1;
• Therefore, 𝛿𝑠 = Δ𝑧 𝜆{/𝜆1 is the distance that the radiation overtakes the e-beam 

every Δ𝑧 integration step. 

40

slippage

0 𝑠-./0-X-ray radiation

0 𝑠-./0-e-beam

Step 0: initial

Step 4: 4Δ𝑧 distance



ZFEL code setup
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ZFEL code setup cont’d
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Execution
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Results: x-ray power

44

Simulated power at a MaRIE-like x-ray FEL in the 1D approximation. Strong SASE power fluctuations are present. 
Averaged power exhibits expected characteristics of initial lethargy, exponential growth and saturation.



Results: phase space distribution
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Results: spectral analysis

46

Simulated power spectrum at a MaRIE-like x-ray FEL in the 1D approximation. Strong SASE power fluctuations 
corresponding to the spectrum with a relative bandwidth of 4×1078. The contrast of the resonant radiation vs 
incoherent background is about 1078.



Results: Transverse dynamics?

47

Normalized emittance: 𝜀3 =
4
5!

Mean beta: �̅� = 6$"

5!4#


